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Quasi-static deformation of particulate media
By C. Thornton and S. J. Antony

Civil and Mechanical Engineering Division, School of Engineering and
Applied Sciences, Aston University, Birmingham B4 7ET, UK

Quasi-static shear deformation of granular media is examined by performing numeri-
cal simulations on polydisperse systems of elastic spheres in a periodic cell. Results of
axisymmetric compression test simulations are reported for both a dense and a loose
system of spheres sheared under constant mean stress conditions. At the macroscopic
scale, the simulated stress–strain-dilation responses are in excellent qualitative agree-
ment with the mechanical behaviour of sand observed in real experiments. Numerical
simulation permits a detailed examination of the evolution of internal variables asso-
ciated with the micromechanical processes occurring at the particle scale. In this
context, we present and discuss the evolution of the induced structural anisotropy,
the percentage of sliding contacts, the average coordination number and the nor-
mal and tangential contact-force contributions to the stress tensor. Encouraged by
recent research published by physicists working on granular media, we show how the
distribution of normal contact forces evolves during shear, and how it is affected by
changing the particle modulus and stress level. This work has led us to consider two
types of interparticle contacts: (1) the contacts carrying below-average normal con-
tact forces; and (2) the contacts carrying above-average normal contact forces. We
examine how these two different categories contribute to the stress tensor and the
structural anisotropy tensor. As a consequence, we present information that provides
new insights into the physics of granular media and clarifies some previous findings.

Keywords: numerical simulation; granular media; quasi-static deformation;
axisymmetric compression; microstructure evolution; force transmission

1. Introduction

Sands, grains and powders are granular materials whose macroscopic behaviour dur-
ing quasi-static deformation is related, in some way, to the spatial and size dis-
tributions of the constituent particles and the load-displacement behaviour at the
interparticle contacts. Traditional theoretical and experimental investigations of the
mechanical behaviour of granular materials are restricted by the limited quantitative
information about what actually happens internally. Laboratory experiments on real
materials rely on estimates of the macroscopic stress and strain states from boundary
measurements, which themselves depend on assumptions made about the material
behaviour. Information about the internal mechanics is rare, since attempts at direct
observation and measurement intrude upon the material response. In addition, com-
parisons between sets of test data are uncertain due to the inability to prepare exact
replicas of the physical system. Traditional attempts to mathematically model the
mechanical behaviour of granular media are normally based on intuitive speculation
as to how the observed experimental behaviour might best be modelled by modify-
ing existing continuum mechanics theories. However, the resulting theories invariably
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include new parameters, the precise physical meaning of which is relatively obscure.
This leads to difficulties in selecting appropriate experiments to rigorously test a
theory.

An alternative approach is to perform computer-simulated experiments, which
provide a common environment for both theory and experiment in which material
properties may be precisely described and all resultant observations are quantifiable.
This environment offers perfect control over experiments, non-intrusive measure-
ments, and, with computer graphics, permits visualization of the internal microme-
chanical processes. The technique is well suited to the examination of assumptions
and predictions of mathematical models for discrete systems, such as granular media,
and is able to provide additional information not readily accessible in real physical
experiments. A well-established computational technique that we have used at Aston
since 1980 was developed by Cundall & Strack (1979) and is commonly known as the
discrete (or distinct) element method. The method models the interactions between
contiguous particles as a dynamic process and the time-evolution of the system of
particles is advanced using a simple explicit finite-difference scheme.

Application of the simulation code involves cyclic calculations. At any time t, inter-
particle force increments are calculated at all contacts from the relative velocities of
the contacting particles using incremental force-displacement rules. The interparti-
cle forces are updated and, from the new out-of-balance force and moment on each
particle, new particle accelerations (both linear and rotational) are obtained using
Newton’s second law. Numerical integration of the accelerations, using a small time-
step, ∆t, provides new particle velocities that are then numerically integrated to give
displacement increments, from which the new particle positions are obtained. Hav-
ing obtained new positions and velocities for all the particles, the program repeats
the cycle of updating contact forces and particle locations. Checks are incorporated
to identify new contacts and contacts that no longer exist. For further information
about the numerical methodology, the reader is referred to Cundall & Strack (1979),
Barnes (1985) and Cundall (1988).

In the original two-dimensional simulation code BALL, linear springs and dashpots
were used to model the interactions between contiguous particles (Cundall & Strack
1979, 1983; Thornton & Barnes 1986), and, to simulate quasi-static deformation, it
was necessary to incorporate (global) damping terms into the equations of motion in
order to dissipate sufficient energy. In the Aston version of the three-dimensional sim-
ulation code TRUBAL, the interactions between contiguous spheres are modelled by
algorithms based on theoretical contact mechanics. Details of the contact mechanics
theories used are provided by Thornton & Yin (1991) and Thornton (1997a). Global
damping is no longer used in the TRUBAL code. Instead, the particle density is
scaled up by a factor of 1012 in order to provide sufficient inertial damping to permit
quasi-static simulations to be performed within a reasonable time-scale.

Simulations are performed using a representative volume element, with periodic
boundaries, subjected to uniform strain fields. In this way, ‘perfect’ experiments
are created free from boundary effects. In order to control the deformation of the
periodic cell, a strain-rate tensor ε̇ij is specified, according to which the centres of
all the spheres in the cell move, as though they are points in a continuum, to satisfy
the equation

∆xi = ε̇ijxj∆t. (1.1)
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As previously described, additional incremental displacements occur as a result
of the interactions between contiguous spheres. In order to follow stress-controlled
loading paths, it is necessary to develop servo-control algorithms which adjust the
imposed strain-rate tensor to minimize the difference between the desired and mea-
sured values of the stress tensor. The servo-control algorithms take the general form

ε̇ = ε̇+ g(σ∗ − σ), (1.2)

where σ∗ is the desired value of stress, σ is the calculated value, and g is a gain
parameter whose appropriate value is obtained by trial and error. Equation (1.2)
may be expressed in terms of individual components or combinations of components
of the strain-rate and stress tensors, depending on the desired loading path to be
followed. More than one servo-control algorithm may be used, but care must be taken
to avoid conflicting adjustments to the strain-rate tensor.

The ensemble average stress tensor is calculated from

σij =
2
V

M∑
1

RNninj +
2
V

M∑
1

RTnitj , where niti = 0, (1.3)

and the summations are over the M contacts in the volume V , Rni defines the radius
vector to the contact, Nni and Tti are the normal and tangential contact forces for
the contact orientation defined by the unit normal vector to the contact plane n, and
t is the unit vector parallel to the contact plane.

Computer simulations of general three-dimensional quasi-static shear deformations
have been performed over the complete range of deviatoric radial loading paths
from axisymmetric compression to axisymmetric extension, for both dense and loose
polydisperse systems of 3620 elastic spheres (Thornton & Sun 1994). The spheres
had an average diameter of 0.26 mm and were given the following properties: Young’s
modulus, E = 70 GPa; Poisson’s ratio, ν = 0.3; coefficient of interparticle friction,
µ = 0.3; and interface energy, Γ = 0.6 J m−2. Further details about the sample
preparation procedures are provided by Thornton & Sun (1993, 1994). In this paper
we consider only axisymmetric compression tests.

2. Macroscopic behaviour

Figure 1 shows the evolution of the deviator stress (σ1 − σ3) with deviator strain
(ε1 − ε3) for both the dense and loose systems during axisymmetric compression,
simulated with the mean stress 1

3(σ1 + σ2 + σ3) maintained constant at 100 kPa.
Figure 2 shows the corresponding evolution of the void ratio during the two simu-
lated experiments. The two figures show that, qualitatively, the stress–strain-dilation
response obtained for both the dense and loose systems is typical of that obtained
in laboratory experiments. The initial shear modulus is much higher for the dense
system, which exhibits a peak in the stress–strain curve at about 5% strain followed
by strain-softening behaviour. The loose system does not exhibit any strain soften-
ing, the deviator stress increases at a decreasing rate until an essentially constant
value is reached at about 15% strain. The volumetric strain responses, indicated by
the changes in void ratio, show that the dense system expands and that the loose
system contracts. At large strains, both systems deform at constant volume and
this is associated with a constant deviator stress which is independent of the initial
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Figure 1. Evolution of deviator stress.

packing density. From traditional soil mechanics, we would expect the constant vol-
ume deformation at large strains to be associated with a ‘critical void ratio’ that is
independent of the initial packing density. The figure shows that, at 30% deviator
strain, the void ratio is not exactly the same for the two systems: 0.598 for the dense
system; 0.606 for the loose system. However, in recently completed simulations on
polydisperse systems of 8000 spheres, it has been found that the critical void ratio is
attained at approximately 50% axial strain. In addition to the macroscopic behaviour
depicted in figures 1 and 2, it is also possible, in numerically simulated experiments,
to examine various internal variables and their evolution, as illustrated in § 3.

3. Evolution of internal variables

It is now well established that shear deformation of granular media produces an
induced structural anisotropy that is developed primarily as a result of contact sep-
aration occurring in directions that are approximately orthogonal to the direction
of the major principal stress. Structural anisotropy is defined by the distribution
of contact orientations that may be represented by a probability density function,
E(n), and characterized by a ‘fabric’ tensor, φij (Satake 1982), where

φij = 〈ninj〉 =
1
M

M∑
1

ninj =
1

4π

∫
Ω

E(n)ninj dΩ, (3.1)

which satisfies the conditions∫
Ω

E(n) dΩ = 1 and E(n) = E(−n). (3.2)
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Figure 2. Evolution of void ratio.

The probability density function may be represented by a Fourier series expansion
expressed in terms of even rank tensors

E(n) = E0 + Eijfij + · · · , where fij = ninj − 1
3δij , (3.3)

and

E0 =
1

4π

∫
Ω

E(n) dΩ =
1

4π
, (3.4)

Eij =
15
8π

∫
Ω

E(n)fij dΩ =
15
8π

(φij − 1
3δij). (3.5)

During the numerical simulations, it was confirmed that, when subjected to axi-
symmetric compression, the conditions σ2 = σ3 and φ2 = φ3 were reasonably satis-
fied. Consequently, the degree of induced structural anisotropy can simply be defined
by the difference between the major and minor principal components of φij . Figure 3
illustrates the evolution of the induced structural anisotropy, defined by the devia-
tor fabric (φ1 − φ3), for both dense and loose systems. The figure shows that the
structural anisotropy increases at a decreasing rate to a maximum value that is
dependent on the initial packing density. The dense system exhibits a decrease in
structural anisotropy at strains in excess of 10% until, at large strains, the degree
of structural anisotropy is the same for both systems. However, it can be shown
that, since E(n) > 0 for all orientations, the maximum possible degree of structural
anisotropy under axisymmetric compression conditions is (φ1 − φ3) = 0.25, which is
much greater than the maximum degree of anisotropy developed in the dense sys-
tem. This may be attributed to the nature of the force transmission through particle
systems, which will be discussed later in the paper.
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Figure 3. Evolution of induced structural anisotropy.

Equation (1.3) may be rewritten as

σij = σkk

[〈RNninj〉
〈RN〉 +

〈RTnitj〉
〈RN〉

]
= σN

ij + σT
ij , (3.6)

where σN
ij and σT

ij are the normal and tangential contact-force contributions to the
stress tensor, respectively, and

σkk =
2M
V
〈RN〉. (3.7)

Using (3.6) to calculate the normal and tangential contact-force contributions to
the stress tensor, we may examine how the normal and tangential contact forces
contribute to the evolution of the deviator stress during axisymmetric compression
of the dense system. The results are shown in figure 4. It can be seen that the
normal contact-force contribution is the dominant contribution to the deviator stress.
The tangential contact-force contribution is very small. In earlier three-dimensional
simulations reported by Thornton & Sun (1993), the same phenomena were observed
during axisymmetric compression of loose systems of spheres.

The average coordination number is usually defined as Z = 2M/N , where M
is the number of contacts and N is the number of particles. However, numerical
simulations have revealed that, at any time during shear, there are some particles
with no contacts and some particles with only one contact. None of these particles
is contributing to the stable state of stress. Hence, we define a mechanical average
coordination number:

Zm =
2M −N1

N −N0 −N1
, (3.8)
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Figure 4. Evolution of normal and tangential contact-force contributions to the deviator stress
(dense system).

Figure 5. Evolution of the mechanical average coordination number.

where N1 and N0 are the number of particles with only one or no contacts, respec-
tively.

The evolution of the mechanical average coordination number, Zm, defined by (3.8)
is shown in figure 5. During the initial 3% deviator strain, there is a rapid change in
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Figure 6. Ratio of sliding contacts.

the mechanical coordination number until a critical value is attained that remains
essentially constant thereafter, irrespective of whether the system is expanding or
contracting. This critical mechanical coordination number is considered to reflect an
underlying physical stability requirement in some way and corresponds, in effect, to
a percolation threshold. Figure 6 shows that the ratio of sliding contacts increases
to a value that remains essentially constant after about 1% deviator strain and that
is independent of the initial packing density.

In real experiments it is difficult to distinguish between the effects of contact fric-
tion and particle shape. Numerical simulations allow the effects of contact friction
to be isolated. Thornton & Sun (1993) reported simulations of axisymmetric com-
pression using two different coefficients of interparticle friction, µ = 0.3 and µ = 0.6,
specified for both the dense and loose systems, with no interparticle adhesion. The
results showed that an increase in the interparticle friction resulted in an increase
in shear modulus and shear strength for both systems and also resulted in a higher
degree of induced structural anisotropy and higher rates of dilation. Although the
tangential contact-force contribution to the deviator stress increased with increased
interparticle friction, it remained very small in comparison to the normal contact-
force contribution, which also increased when the interparticle friction was increased.
It was also observed that when the interparticle friction was increased the ratio of slid-
ing contacts decreased and the critical mechanical coordination number decreased.

Further axisymmetric compression test simulations have been performed on the
dense system at a constant mean stress of 100 kPa with a different value of µ spec-
ified for each test. Figure 7 shows that increasing the interparticle friction reduces
the ratio of sliding contacts and, in figure 8, it can be seen that the critical mechan-
ical coordination number decreases if the interparticle friction is increased. All our
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Figure 7. Effect of interparticle friction on the ratio of sliding contacts.

Figure 8. Effect of interparticle friction on the mechanical average coordination number.

simulations have shown that increasing the interparticle friction does not produce a
significant increase in the amount of energy dissipated, but decreases the percentage
of sliding contacts. This demonstrates that friction acts, primarily, as a kinematic
constraint. Enhanced friction at the contacts increases the stability of the system and
reduces the number of contacts required to achieve a stable configuration, leading to a
reduction in the critical mechanical coordination number. When interparticle sliding
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does occur it tends to be at the relatively unloaded contacts in the regions between
the chains of particles transmitting large forces (as described in § 4). Consequently,
the tangential contact-force contribution to the deviator stress is small.

4. Force transmission

For any assemblage of discrete particles subjected to external loading, the trans-
mission of force from one boundary to another can only occur via the interparticle
contacts. Intuitively, therefore, we expect that the distribution of contacts will deter-
mine the distribution of forces within the system of particles, and that the forces will
not necessarily be distributed uniformly. Direct observations of stress distribution
in photoelastic studies of two-dimensional arrays of discs have been reported by
Dantu (1957), de Josselin de Jong & Verruijt (1969), Drescher & de Josselin de Jong
(1972) and Oda & Konishi (1974). Konishi et al . (1982) used the same photoelastic
technique to examine arrays of oval-shaped particles. In all photoelastic studies of
disc assemblies it has been observed that the load is largely transmitted by rela-
tively rigid, heavily stressed chains of particles forming a relatively sparse network of
above-average contact forces. Groups of particles separating the strong force chains
are only lightly loaded. The implication is that, in a random system of particles, the
applied load will search for the shortest and most direct transmission path, and the
straighter the chosen pathway (less of a zig-zag) the higher the proportion of load
that will be transmitted.

Cundall & Strack (1979) numerically simulated a simple shear test and demon-
strated good qualitative agreement obtained between the simulated force trans-
mission patterns and those obtained in the corresponding photoelastic disc experi-
ment reported by Oda & Konishi (1974). Thornton & Barnes (1986) reported two-
dimensional simulations of quasi-static shear deformation of a compact polydisperse
system of 1000 discs using the BALL code and provided visualizations of the force
transmission patterns obtained under isotropic and anisotropic states of stress. Even
when both the microstructure and the stress state were isotropic, some contacts
transmitted forces several times those of others but there was no preferred direction
for the larger contact forces. Under anisotropic stress conditions, the large forces
were orientated in the direction of the major principal stress. It was observed that
the contact-force obliquity along high-force chains was low, whereas the ratio of tan-
gential to normal contact forces was much higher in the relatively unloaded regions
and sliding tended to occur at contacts that carried small forces.

Using the three-dimensional simulation code TRUBAL, quasi-static deformation
tests have been simulated in a periodic cell on polydisperse systems of 8000 elas-
tic spheres. Thornton (1997b) provided visualizations to illustrate the contact-force
transmission through such a system when subjected to an axisymmetric stress state
(σ1 > σ2 = σ3). When viewed in the direction of σ1, large forces were evident but
there appeared to be no directional bias, due to the fact that both the structure and
the state of stress were isotropic in the plane orthogonal to the viewing direction.
However, when the force transmission was viewed in a direction orthogonal to the
σ1 direction, it was clear that the strong forces tended to align themselves in the σ1
direction. Experimental evidence of strong force chains in three-dimensional packings
of spheres has been demonstrated by Liu et al . (1995).
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Figure 9. Normal contact-force distribution at isotropic stress states of 50, 100, 200 and
400 kPa (hard-sphere system).

Liu et al . (1995) also used a layer of carbon paper on the inside surface of a cylin-
drical container to examine the distribution of forces on the base when the container
was filled with beads. Their results indicated that the number of contacts carrying a
given force decreased exponentially as the magnitude of the force increased. A simple
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theoretical model was proposed for the probability distribution of the magnitude of
the normal contact forces (see also Coppersmith et al . 1996). The model assumes
that the inhomogeneity of the particle arrangement causes an unequal distribution
of force transmission between contiguous particles, which leads to chains of parti-
cles transmitting above-average forces. Adopting a stochastic analysis, a mean-field
solution for the probability distribution was obtained that may be written in the
form

P (f) =
kk

(k − 1)!
fk−1 exp(−kf), where f =

N

〈N〉 , (4.1)

and 〈N〉 is the average normal contact force.
We have performed three-dimensional simulations of two polydisperse systems of

8000 elastic spheres subjected to isotropic compression in a periodic cell. The only
difference in the particle specifications was that one system was composed of ‘hard’
spheres and the other of ‘soft’ spheres. The particles in the hard-sphere system were
attributed with a Young’s modulus, E = 70 GPa; a value of E = 70 MPa was speci-
fied for the particles in the soft-sphere system. Both systems were isotropically com-
pressed to stress levels of 50, 100, 200 and 400 kPa. Figure 9 shows that the contact-
force distributions obtained for the hard-sphere system are insensitive to stress level.
Superimposed on the figure, is the theoretical model given by equation (4.1) with
k = 3. Although the theoretical model reflects the exponential distribution of the
large contact forces, it only agrees reasonably well with the data sets for contact
forces that are more than twice the magnitude of the average contact force, and fails
to capture the distribution of the below-average contact forces.

The contact-force distributions obtained for the soft-particle system (figure 10),
clearly show that the distribution of the above-average forces depends on the stress
level. The results indicate that as the stress level is increased, the contact force
tends towards a Gaussian distribution in which there is a more equal sharing of the
load between all of the contacts. The implication is that the same trend would be
observed for the hard-particle system if it were subjected to a sufficiently high stress
level. Figures 11 and 12 illustrate how the contact-force distribution changes during
shear, for the hard and soft-particle systems, respectively. It can be seen that, in both
cases, the above-average contact forces tend to follow a more exponential distribution
and that there is an increase in the proportion of contacts carrying below-average
contact forces.

Radjai et al . (1996) examined force networks in numerical simulations of two-
dimensional systems of rigid spheres. In a rigid-sphere array, the contact force is not
a function of the relative displacement of the two spheres forming the contact, but
is the result of the geometrical configuration of the whole system and the boundary
conditions. The simulation technique has been termed the contact dynamics method
and is described by Moreau (1994). From the probability distributions obtained,
Radjai et al . (1996) found that although the above-average normal contact forces
exhibited an exponential decay, the smaller than average normal contact forces had
a power-law distribution. They suggested that the probability, P (f), takes the form

P (f) ∝ fα, f < 1, (4.2)
P (f) ∝ exp[β(1− f)], f > 1. (4.3)

From all of our simulations, whether they be of a hard or a soft system under
isotropic compression or at any stage during shear, we find that, for contacts trans-
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Figure 10. Normal contact-force distribution at isotropic stress states of 50, 100, 200 and
400 kPa (soft-sphere system).

mitting small forces (f < 0.5), the distribution follows a power law defined by (4.2)
with α = −0.16, which may be compared with the value of α = −0.3 reported
by Radjai et al . (1996). Considering the contact-force distributions obtained for the
hard-sphere system shown in figure 9, we find that the best fit to the data using (4.3)
is obtained with β = 2.15, compared with the reported value, β = 1.4, in Radjai et
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Figure 11. Normal contact-force distribution in the hard-sphere system at the start of shear
(•), at maximum deviator stress (◦) and at fully developed flow (�).

al . (1996). However, a good fit to the data is only obtained for f > 2 and it is clear
from figure 10 that (4.3) will not provide a satisfactory representation of the force
distribution for soft-particle systems, especially at high stress levels. Furthermore,
the inability of (4.2) and (4.3) to fit the data over the range 0.5 < f < 2.0 is a serious
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Figure 12. Normal contact-force distribution in the soft-sphere system at the start of shear (•),
at maximum deviator stress (◦) and at fully developed flow (�).

limitation, since this range accounts for at least half of the contacts. The problem
may be resolved by adopting the following empirical function suggested by Mueth et
al . (1998):

P (f) = a[1− b exp(−f2)] exp(−cf). (4.4)
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Figure 13. Evolution of the contributions of the weak (�) and strong (◦) subnetworks to the
deviator stress (•) (hard-sphere system).

5. Strong- and weak-force transmission networks

Radjai et al . (1997) suggested that the contact network may be partitioned into two
complementary subnetworks: a ‘strong’ percolating subnetwork of contacts trans-
mitting above-average contact forces; and a ‘weak’ subnetwork of contacts carrying
below-average forces. From two-dimensional simulations of quasi-static biaxial com-
pression on a polydisperse system of ca. 4000 rigid discs, they concluded that the
strong network accounts for all the deviatoric stress, whereas the weak network con-
tributes only to the mean stress. They also found that the orientation of the induced
structural anisotropy in the strong network coincided with the orientation of the
stress tensor, as expected, but the orientation of the induced structural anisotropy
in the weak network was orthogonal to that of the strong network. In this section we
re-examine our own data in terms of strong and weak force-transmission networks
and the contribution each makes to both the stress tensor and the fabric tensor.

Figures 13 and 14 illustrate the evolution of the deviator stress and its decompo-
sition into the contributions due to contacts with f < 1 and f > 1, for the hard
and soft systems of 8000 spheres, respectively, when subjected to axisymmetric com-
pression, with the mean stress maintained constant at 100 kPa. The figures clearly
show that the contribution of the weak network of contacts is small, never exceeding
13% for the hard-particle system and never deviating from an isotropic stress state
by more than ±4 kPa for the system of soft particles. Inspection of the data reveals
that 70% of the contacts in the hard-sphere system carry below-average forces and
contribute to 40% of the mean stress. In the soft-sphere system, the weak network
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Figure 14. Evolution of the contributions of the weak (�) and strong (◦) subnetworks to the
deviator stress (•) (soft-sphere system).

is composed of ca. 67% of all contacts and their contribution to the mean stress is
ca. 35%. It is interesting to note that the 5% (3%) of contacts transmitting forces
greater than twice the average contact force in the hard (soft) sphere systems only
contribute to 40% (45%) of the deviator stress. This emphasizes the need for a prob-
ability distribution function, P (f), that fits the data over the complete range f > 1.

The evolution of the deviator fabric (φ1 − φ3) during shear for the two systems is
shown in figures 15 and 16. The structural-anisotropy tensor may be partitioned as
follows:

φij = (1− q)φW
ij + qφS

ij , (5.1)

where the superscripts ‘W’ and ‘S’ indicate the weak and strong subnetworks, and q
is the proportion of contacts with f > 1. The structural anisotropy tensor has also
been calculated for the weak and strong networks separately, and the evolution of
the corresponding deviator fabrics are superimposed on the two figures. The subnet-
work of contacts with f > 1 develops a strongly anisotropic structure in both the
hard- and soft-particle systems. The weak subnetworks are only slightly anisotropic
and, in agreement with the two-dimensional simulation data for rigid discs obtained
by Radjai et al . (1997), there are more contacts orientated orthogonal to the major
principal stress direction in the case of the soft system. In the hard-particle system,
although the orientation of the structural anisotropy of the weak subnetwork is ini-
tially orthogonal to the major principal stress direction, after 4% deviator strain the
orientation coincides with that of the stress tensor.
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Figure 15. Evolution of the contributions of the weak (�) and strong (◦) subnetworks to the
induced structural anisotropy (•) (hard-sphere system).

Any conclusions drawn from the data presented in figures 13–16 regarding the
complementary nature of the strong and weak subnetworks, must also recognize the
statistical limitations of a three-dimensional system of only 8000 particles, which is
equivalent to a two-dimensional system of 400 discs. The three-dimensional equiv-
alent of the 4000-disc system of Radjai et al . (1997) would require ca. 250 000 par-
ticles. Consequently, until more information from simulations of much larger three-
dimensional systems becomes available, it is not unreasonable to assume that the
weak network is structurally isotropic and contributes only to the mean stress.

6. Concluding remarks

Results have been presented of numerical simulations of quasi-static deformation of
polydisperse systems of elastic spheres. Both macroscopic and microscopic data have
been examined, and explanations have been provided for how the ensemble state of
stress relates to the nature of the force transmission between the constituent particles
for systems with enduring contacts. The next problem is to examine in detail the
associated particle kinematics, in order to obtain a clear physical explanation for the
shear-induced dilation which is still lacking. Further work is also required to examine
the transition to and from rapid granular flow in which the particle interactions are
predominantly collisional. Since numerical simulation provides access to quantitative
information about the micromechanical processes occurring at the particle scale, it
is the key to obtaining a reliable understanding of the physics of granular media in
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Figure 16. Evolution of the contributions of the weak (�) and strong (◦) subnetworks to the
induced structural anisotropy (•) (soft-sphere system).

its various states that may lead to physically realistic continuum models necessary
to tackle engineering scale problems.

The numerical simulations were carried out during projects supported by the Engineering and
Physical Sciences Research Council (grant nos GR/H14427 and GR/K05832). C.T. thanks S.
Edwards, A. Liu, S. Nagel, R. Ball, S. Alexander and especially T. Witten for stimulating
discussions on force transmission in granular media at the Institute of Theoretical Physics,
University of California at Santa Barbara during August 1997, and is grateful for the financial
contribution provided through National Science Foundation grant no. PHY94-07194.
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